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NORMAL WAVES IN A FLUID-FILLED CYLINDRICAL CAVITY LOCATED 
IN A SATURATED POROUS MEDIUM' 

V.N. KRUTIN, M.G. MARKOV and A.W. YUMATOV 

Within the framework of the linear dynamics of saturated porous media, 
the problem of the propagation of elastic harmonic wavesintheneighbour- 
hood of a cylindrical cavity filled with an ideal fluid and located in a 
porous medium is solved. The dependence of the kinematic and dynamic 
parameters of the normal waves on the elastic properties and permeability 
of the rock is found. It is shown that the permeability affects the 
normal wave damping in the cavity considerably. 

The solution of the problem of elastic wave propagation in a 
cylindrical waveguide with a fluid surrounded by a permeable medium is of 
interest in connection with the development of an acoustic method of 
investigating wells, in acoustic measurements of the sound absorbing 
properties of porous materials, etc. 

Let an infinite cylindrical cavity of radius a, filled with an ideal compressible fluid, 
intersect a saturated compressible medium. Let the z axis of a cylindrical r, 8, z' system of 
coordinates be superposed on the cavity axis. A point source of harmonic vibrations of bulk 
velocity is placed at the origin. 

Elastic wave propagation in a fluid filling a cavity is described by the equation 

(A + kc,‘) L = + 6 (r, 8, z); k, = + , (1) 

where W = VL is the displacement vector, k, is the wave number of the longitudinal wave in 
the fluid, c is the velocity of sound, p and pf are the fluid compressibility and density, o 
is the angular frequency, and D is the source bulk velocity. 

Neglecting interphasal heat transfer and thennoeleasticity effects, the equations of 
small harmonic vibrations (which vary as e-b:) of a homogeneous isotropic saturated porous 
medium have the form /l-3/ 

o'p,,U +o*puV=i~(V- U)-A'AU-V[(A+N)VU+QVV] 

@,,U+o'p,,V=iob(U--V)-V(QVU+fiVV) 

b = qW(KF (a)) 

(2) 

Here U and V are the displacement vectors of the solid phase and the fluid in the pores, 
A, N,Q, Rare elastic constants, pm, p,, are dynamic density coefficients, prr (0 is the 
apparent fluid density, Q, is the bulk porosity, K is the permeability factor, and r~ is the 
fluid dynamic viscosity; the function P(O) describes the deviation of the flow in the pores 
from Poiseuille flow /2/. 

We represent displacement of the skeleton and the fluid in the pores as well as the dis- 
placement of the fluid filling the cavity in the form of Fourier integrals in the z-component 
of the wave vector 

(U.V,W)=& 1 - tg (u, v, w) C’W (3) 
-(D 

where here and henceforth we omit the factor eAot throughout. 
We introduce the longitudinal wave potential A‘ and transverse wave potential 'P by the 

relationships 
u = V(A, + h,)$_Vxl (4) 
V - 0 (mrA, + m,A,) + V x(VmJ 
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(kl are wave numbers of longitudinal waves of the first and second kinds (j = 1,2) and of the 
transverse waves (j = 3) /2/j. Then (2) reduce to a system of Helmholtz vector and scalar 
equations /4/ 

A (Al, A,, ‘p) + @,A,, &A,, k,‘Y) = 0 (5) 

The solutions of this system and (1) that satisfy the radiation conditions and the 
constraints on the cavity axis have the form 

H,(” and J, are the Hankel function of the first kind and the Bessel function /5/, and X, 
are determined by the following conditions on the cavity boundary: 

L-& f d5[Xdp(l$)-~HP)(lf)leio,. 
-_ 

rll = -PL, r,, = 0, pr. = PO 

(I - @) u; + otf; = w; 

(rij = A611 div U + 2N (XI,/&, + LWJl&,) + 

(7) 

Q div (U i- V) t&J + &JR div V, 

pa = - (Q div U + R div V)/@) 

Here pris the pressure of the fluid filling the cavity, r,J is the total stress tensor 
in the porous medium, and pO is the fluid pressure in the pores. 

Conditions (7), respectively, express the continuity of the total normal stresses, the 
absence of shear stresses, the equality of the fluid pressures in the cavity and the pores, 
and the continuity of the normal velocity component on the cavity boundary. 

Substitution of the expressions for the longitudinal and transverse wave potentials (6) 
into (7) results in a system of four linear equations for determining the constants X, 

~‘PxoJo (1) - Jil XjI(A i- Q (mJ f 1) -I- RmJ) (kJ*a’ -I- (8) 

2NpJ) @‘(p,) - 2NpJf4” (PJ)] - 

ZNitX, [s# (s) - I@ (s)] = - @-~LJ&*) (I) 

. 
$ xJ%pJ#’ (PJ) + & (ks’a’ - 2;‘) @’ (S) = 0 

@W’X,J, (I) - ,$I, X, (Q + RmJ) kJ’dti:‘(pJ) = 

- auwpzfp (1) 

X&J, (l) - ,it iJ (I - @ f mJ@) pJ@’ (PJ) f 

X3 (i - @ i- m,@) iSHI (b) = -DlHp (I); x = k,a 

The normal waves correspond to the roots of the equation A = 0, where A isdeterminant 
of system (8). This equation determines the dependence of the normal wave velocities and 
dampings on the frequency (dispersion relations). 

The source under consideration excites two kinds of normal waves /6-O/, the Lamb-Stonely 
wave (LSW) and pseudo-Rayleigh waves. 

Ju,st like the zero-th normal wave propagating in a waveguide with absolutely rigid walls, 
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theLSWisexCitedfotfrequenciesaslowasdesi.red. At the lowest frequencies the dispersion 
equation A = 0 has a unique root corresponding to this wave. At high frequencies the LSW 
behaves just like a Stonely wave propagating along the plane interface of two media. In the 
low-frequency domain, when the degree of penetration into the fluid filling the cavity exceeds 
the cavity radius, the LSW becomes practically planar and is similar towaves considered by 
Zhukovskii and Lamb /9, lo/. This type of low-frequency wave is also called tubular waves, 
hydrowaves /lo, 11/ and Stonely waves /6/ in the literature. The LSW phase and group 
velocities are lower than the transverse wave velocities in a solid and the longitudinal wave 
in a fluid filling a cavity, and the amplitude of the displacement therein falls off with 
distance from the interface. The properties of LSW were investigated in detail in /7, 8/ for 
a cavity in an ideally elastic single-phase medium. 

The solution of the dispersion equation h = 0 in the complex domain was obtained using 
the Powell method of searching for the minimum of a function,ofmany variables /ll/. Calcu- 
lations were perfomed for a porous medium (unless otherwise stated Q, = 0.2 and K = 1 pm*) 
with density pt = 2870 kg/m3 of the skeleton substance, with the velocities up = 6800 m/set 
and up/v, = 1.8 
a = 0.1 m, 

of the longitudinal V, and transverse waves v, in the skeleton substance; 
the elastic constants A,N,Q,R were calculated by a well-known method /12/. 

Fig.1 shows frequency dependences of the LSW phase velocity along the boundary with a 
porous permeable solid (solid curve 1) and a single-phase elastic solid (dashed curve 1). The 
computations showedthatfor both the single-phase and the saturated porous medium the LSW 
phase velocity increases with frequency. 

The occurrence of filtration fluid overflows on the cavity boundary results in a notice- 
able decrease in the LSW velocity on the boundary with the permeable solid and the appearance 
of damping. Fig.1 shows the logarithmic damping decrement 8 of the LSW as a function of the 
frequency (cures2 and 3 correspond to K = 1 pm* and K = 0,i Pm*). Here, the frequency 
dependence is represented for the normalized damping coefficient A of a LSW, which equals the 
abolute value of the residue of the integrand in (6) for the potential I,. The solid curve 4 
corresponds to a permeable medium, and the dashed curve 4 to an impermeable medium. The 
amplitude of the excitation factor increase monotonically as the frequency falls and depends 
weakly on the permeability. 

Fig.2 shows the dependence of the velocity (solid curves 1 and 2) and the logarithmic 
damping decrement (dashed curves 1 and 2) on the permeability factor K over its range of 
variation characteristic for mountain rock. Curve 1 and 2 correspond to 0 = 0.1 and @ = 0.2. 
As the permeability increases,theintensity of the filtration fluid overflow in the pores 
increases, resulting in subsequent viscous dissipation of the wave energy because of friction 
on the walls of the pore channels and, respectively, in an increase in the damping and a 
decrease in the LSW velocity. The reduction in the velocity as the porosity increases is due 
mainly to a decrease in the shear modulus of the rock. 
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To obtain an explicit expression for the LSW wave number k in the limiting case of low 
frequencies, it is simplest to use the theory of waves in narrow tubes /lo/ given in /13/. 
The wave number of the zero-th normal wave in a tube with walls that are not absolutely rigid 
is determined in the low-frequency domain (k,a<i) by the expression 

where y is the specific acoustic impedance oftheboundary and w' is the normal component of 
the fluid velocity. Computations for the boundary with a porous permeable medium in the long- 
wave approximation (Ik,nI< 1) results in the expression 

(C is Euler's constant). It follows from (9) and (10) that unlike the case of an impermeable 
boundary the LSW velocity tends to zero as the frequency falls. This phenomenon has a simple 
explanation: as the frequency falls the whole large fluid mass in the pore channels is involved 
in the vibrations. 

At sufficiently high frequencies the dispersion equation A=0 has roots corresponding 
to the zero-th (LSW), first, second, etc. normal waves. All these waves, except the LSW, have 
critical velocities. In the literature devoted to normal waves in a cylindrical cavity 
surrounded by an impermeable elastic medium they are called reflected conical /6/, water or 
sbply normal /7/, as well as pseudo-Rayleigh waves /a/. 

The normal wave phase velocity U satisfies the inequality c<v<v, /7, S/, where v, is 
the transverse wave velocity. For a frequency close to the critical value, the phase velocity 
v and group velocity u of normal waves are close to the transverse wave velocity. As the 
frequency increases these velocities approach the longitudinal wave velocity in the fluid 
filling the cavity. 

Fig.3 shows dispersion curves for the first normal wave (the solid curves) and the second 
normal wave (the dashed curves). As the frequency increases the phase velocities of the 
normal waves (curves 1) decrease monotonically while the group velocities (curve 2) depend 
non-monotonically on the frequency, andhave a minimum. The presence of a minimum on the curve 
for the group velocity corresponding to the maximum of the excitation factor (curves 3) in- 
dicates the existence of an Airy phase /7, 0/ in which the group velocity of the normal wave 
is below the longitudinal wave velocity in the fluid. 

In the case of practical importance when the inequalities Ik,al>l, o/oO<l are satisfied 
simultaneously, where o0 = blp, /2/the dispersion equation in the zero-th approximation is 
identical with the analogous equation for normal waves on the boundary with an ideally elastic 
medium. 

Indeed, on replacing the Hankel functions Hi' in (8) by their asymptotic form for 
jp,l>i /5/, the column ofthedeterminant A of system (8) containing a function of p, takes 
the form 

~01 12W (6' - ip,), 26~~. - (Q + Rm,)k,%*. 

(f - @ + m,@)pJ CGi.3 erp Ii (P, - n/4)1 

If terms of just the highest order in k,o are kept in the dispersion equation, taking 
into account that for o/oO&l 

then it is identical with the dispersion equation for a cavity located in a single-phase 
elastic medium with the following dynamic parameters: ps = p,k= H - 2N. p= N. Here p0 is the 
density, and A. p are the La& parameters. An analogous result was obtained /14/ in investi- 
gating Rayleigh wave propagation along the boundary of a saturated porous half-space by using 
the method of matched asymptotic expansions. 

As for the LSW, the excitation factor of normal waves for a given frequency will depend 
slightly on the permeability and be close in magnitude to the excitation factor of these waves 
in a cavity located in a single-phase elastic medium. At the same time normal wave damping 
depends strongly on the permeability of the medium. Fig.4 shows the logarithmic damping 
decrement t) (curves 2) and the ratio am/a, (curves 21, where aNs aa are, respectively, the 
normal and transverse wave damping coefficients for the first normal wave for k,a = 5 (the 
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solid curves) and for the second normal wave for k,o = 10 (the dashed curves). The normal 
wave damping coefficient in the presence of a permeable boundary considerably exceeds the 
transverse wave damping coefficient. 

1 

The influence of overflows through the interface of the media on normal wave propagation 
reveals the possibility of an experimental determination of the filtration characteristics of 
a medium by means of the parameters of these waves. 
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ON THE STATE OF STRESS AND STRAIN OF LAYERED PLATES 
OF NON-SYMMETRIC CONSTRUCTION* 

I.S. ZORIN and YU.A. ROMASHEV 

An asymptotic analysis is performed of the elasticity theory problem of 
the deformation of a thin multilayer anisotropicplate in a three- 
dimensional formulation without assumption regarding the regularity of 
the plate construction and the nature of the layer or packet deformation 
as a whole. 

Results /l/ are used of an investigation of the solutionsofelliptic 
boundary value problems in thin domains. The relative packet height is 
the small parameter h. A system of eq ations is obtained for the limit 
problem (as h-01, effective plate s P. iffness characteristics are found, 
and specific examples of their analysis are presented. 
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